Origin of the Elements or Elements of the Origin William Parke Physics GWU # Near the Beginning around 13.7 billion years ago, $t=10^{-43}$ seconds, the 'Planck time' $(\sqrt{G \hbar/c^5})$ ## Quantum Fluctuations dominated Space-Time The Universe might have been not much bigger than the Planck Length $r \approx 10^{-32}$ cm Lots of Energy but no matter! The energy could have been contained in a massless scalar field and the tension in space-time The scalar field can cause a period of exponential expansion, 'Inflation', of the Universe from 10⁻³²cm to 1cm! # Inhomogeneities 'washed out' to 1 part in 10⁵ (superstring fluctuations also inflate) # Cosmic Background Explorer COBE (1992) and Wilkinson Microwave Anisotropy Probe (2003) #### WMAP of Universe ### Scalar field undergoes phase change: Quantum Condensates Super-heavy Bosons Gluons, Photons, Weak Bosons, Leptons, Quarks, Baryons, Mesons #### Structure Particles: Quarks and Leptons | | Q | M(GeV) | |---|------|--------| | d | -1/3 | 0.006 | | u | 2/3 | 0.006 | | S | -1/3 | 0.200 | | С | 2/3 | 1.5 | | b | -1/3 | 5.1 | | t | 2/3 | 178. | | | Q | <i>M</i> (MeV) | |-------------|---|----------------| | $v_{\sf e}$ | 0 | <0.003 | | е | 1 | .511 | | $ u_{\mu}$ | 0 | <0.19 | | μ | 1 | 105.66 | | $ u_{ au}$ | 0 | <18.2 | | τ | 1 | 1777. | ### Interaction Generated by 'Gauge Bosons' | Particle | Symbol | Mass (GeV) | |-------------|---------------------------------|--------------------------| | Super-heavy | X | ~10 ¹⁵ | | Higgs | H ⁺ , H ⁰ | 117. | | Gluons | G | Zero | | Weak Bosons | W [±] , Z ⁰ | 80.42, 91.19 | | Photons | γ | < 2x10 ⁻¹⁶ eV | By the elapse time of $t=10^{-6}$ seconds. most baryons and antibaryons annihilated. 1 in a billion left as neutrons and protons "Radiation Era" Plasma of γ , ν , $\overline{\nu}$, e⁻, e⁺, p, n Temperature about 10¹²K ### Expansion continued more gently $R \propto t^{1/2}$, $T \propto t^{-1/2}$ At *T*≈10¹¹K, (10⁻² sec) neutrinos decouple from matter Below *T*≈3x10¹⁰K deuterons stick together to make Helium-4 At $T \approx 10^9$ K (190 seconds), positrons annihilate with electrons to make photons $e^+ + e^- \rightarrow \gamma$ Neutrons taken into Helium or decayed. Left: γ , ν , $\overline{\nu}$, e⁻, p, He⁺⁺(23% wt) (He abundance sensitive to neutron lifetime, $\tau_{1/2}$ =10.23 minutes, and number of species of neutrinos, N=3 from Z⁰ decay!) # Beginning of 'Matter Era' t = 380,000 years, $T \approx 5000 \text{ K}$ Matter 'decoupled' from radiation when neutral atoms formed. (Visible Matter 4%, Dark Matter 23%, Dark Energy 73%) Background radiation predicted by Gamow and Alpher (1948, GWU) # Residual Background found by Penzias and Wilson in 1965 COBE 2000 data: ### 'Stability Gaps' at A=5 and 8 stopped primordial nucleosynthesis | | | | | | | | | | | | ¹² N
-1.96 | ¹³ N
-2.00 | 14N
99.63 | 15N
0.37 | |--------------------------|-------------------------|----------------------------|-------------------------|--------------------------|---------------------------|--------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|--------------------------|---------------------------|-------------------------| | | | | | | | | 8C | °C | ¹⁰ C | ¹¹ C | ¹² C | 13C | ¹⁴ C | ¹⁵ C | | | | | | | | | -20.7 | -0.90 | 1.29 | 3.09 | 98.9 | 1.1 | 11.26 | 0.389 | | | | | | | | ⁷ B
-21.4 | *B
-0.113 | ⁹ B
-18.1 | ¹⁰ B
19.9 | ¹¹ B
80.1 | ¹² B
3.08 | ¹³ B
3.02 | 14B
2.92 | ¹⁵ B
2.73 | | | | | | | ⁶ Be
-20.3 | ⁷ Be
6.66 | *Be
-16.1 | ⁹ Be
100 | ¹⁰ Be
13.7 | ¹¹ Be
1.14 | ¹² Be
-1.26 | | ¹⁴ Be
-2.40 | | | | | | | ⁵ Li
-21.5 | ⁶ Li
7.5 | ⁷ Li
92.5 | ⁸ Li
-0.076 | ⁹ Li
-0.752 | | ¹¹ Li
-2.09 | | | | | | | | ³ He
.000138 | ⁴ He
99.9 | ⁵ He
-21.1 | ⁶ Не
-0.093 | ⁷ He
-20.5 | ⁸ He
-0.924 | | | | | | | | | ¹ H
99.985 | ² H
0.015 | ³ H
8.59 | | | | | | | | | | | | | | ¹ n
2.8 | | | | Î | | | Î | | | | | | | | | | k . | <u> </u> | | | 14 - 1-1 - T-1 - | | <u> </u> | | 1. [1 | <u></u> ' | <u></u> | | 1 | | Stable Element Relative Abundance Unstable Element LOG (Lifetime [sec]) ### Primordial Abundances of Light Elements | Element | Mass Fraction,
observed | Mass Fraction,
theory | |-----------------|-----------------------------------|--------------------------| | ^{1}H | 0.75 | 0.76 | | ^{2}He | $(2.5 \pm 1.5) \times 10^{-5}$ | 2.46×10 ⁻⁵ | | ^{3}He | $(4.2 \pm 2.8) \times 10^{-5}$ | 4.2×10 ⁻⁵ | | ⁴ He | 0.23 ± 0.02 | 0.23 | | 6Li | $(320 \pm 200) \times 10^{-12}$ | 160×10 ⁻¹² | | ^{7}Li | $(4800 \pm 3000) \times 10^{-12}$ | 270×10 ⁻¹² | Data from spectroscopy of Population II (old) stars and gas #### Time and Temperature #### t = 200 million years Galaxies and Stars form Rate of heavier element production strongly dependent on nuclear stabilities, resonances, temperature, and Coulomb barrier #### **Essence of Stellar Dynamics** Baryon, Lepton, Charge, & Energy Conservation $$\frac{dL(r)}{dr} = 4\pi r^2 \rho(r) \varepsilon(\rho, T)$$ Local Mechanical Equilibrium #### Local Thermal Steady-State #### **Equation of State** $$p(r) = \frac{k}{\mu} \rho(r) T(r) + \frac{4\sigma}{3c} T(r)^{4}$$ #### Radiation flow $$\frac{dT(r)}{dr} = -\frac{3\kappa\rho}{4\sigma T^3} \frac{L(r)}{4\pi r^2}$$ #### Convective flow $$\frac{dT(r)}{dr} = (1 - \frac{c_v}{c_p}) \frac{T(r)}{p(r)} \frac{dp(r)}{dr}$$ #### **Element Production in Stars** Reaction rate per unit number density: $$\langle \sigma \ v \rangle = \sqrt{\frac{8}{\pi \mu (kT)^3}} \int_0^\infty \sigma(E) E \ e^{-\frac{E}{kT}} dE$$ #### Maximum rate: $$E_{o} = \left(\frac{\sqrt{2\,\mu}\,\pi\,e^{2}Z_{1}Z_{2}\,kT}{\hbar}\right)^{2/3}$$ #### Jumping the A=5 & 8 Barrier Beryllium-8 resonance predicted by Fred Hoyle from Carbon production via $^8\text{Be}(\alpha,\gamma)^{12}\text{C}$ Resonance was later found. Too short lived to help in early universe production. Oxygen production: Subthreshold resonance in $$^{12}C(\alpha,\gamma)^{16}O$$ ### Time Scales for Element Production in Stars Hydrogen burning: 1 million to 20 million years Helium burning: 100 thousand to 100 million years Carbon burning: 500 to 1000 years Neon burning: 1 year Silicon burning: 1 day Iron made from excess neutrons in reactions such as 22 Ne(α ,n) 25 Mg #### Supernovae Element Production Flux of excess neutrons, e.g. $$^{12}C(p,\gamma)^{13}N(e^+)^{13}C(\alpha,n)^{16}O$$ and neutrinos $$p + e \rightarrow n + v$$ convert lighter elements to heavier ones in a matter of seconds to days #### Abundances of the Elements